Journal of Research in Innovative Teaching & Learning (Nov 2018)

Data competence maturity: developing data-driven decision making

  • Thomas G. Cech,
  • Trent J. Spaulding,
  • Joseph A. Cazier

DOI
https://doi.org/10.1108/JRIT-03-2018-0007
Journal volume & issue
Vol. 11, no. 2
pp. 139 – 158

Abstract

Read online

Purpose - The purpose of this paper is to lay out the data competence maturity model (DCMM) and discuss how the application of the model can serve as a foundation for a measured and deliberate use of data in secondary education. Design/methodology/approach - Although the model is new, its implications, and its application are derived from key findings and best practices from the software development, data analytics and secondary education performance literature. These principles can guide educators to better manage student and operational outcomes. This work builds and applies the DCMM model to secondary education. Findings - The conceptual model reveals significant opportunities to improve data-driven decision making in schools and local education agencies (LEAs). Moving past the first and second stages of the data competency maturity model should allow educators to better incorporate data into the regular decision-making process. Practical implications - Moving up the DCMM to better integrate data into their decision-making process has the potential to produce profound improvements for schools and LEAs. Data science is about making better decisions. Understanding the path laid out in the DCMM to helping an organization move to a more mature data-driven decision-making process will help improve both student and operational outcomes. Originality/value - This paper brings a new concept, the DCMM, to the educational literature and discusses how these principles can be applied to improve decision making by integrating them into their decision-making process and trying to help the organization mature within this framework.

Keywords