Scientific Reports (Feb 2024)

Magneto-optical heterostructures with second resonance of transverse magneto-optical Kerr effect

  • Amene Rezaeian,
  • Mahmood Hosseini Farzad

DOI
https://doi.org/10.1038/s41598-024-54039-3
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Two conventional magneto-plasmonic (MP) structures are firstly superimposed with mirror symmetry to form a symmetric MP heterostructure. These two MP components are separated from each other by a noble metallic layer. The unique feature of this novel heterostructure is that both magneto-plasmon modes of the up and down MP portions can be coupled as the spacer becomes thinner. This intertwining effect leads to appearance of a new peak in the angular transverse magneto-optical Kerr effect (TMOKE) curve of the heterostructure. This new peak which is reported for the first time in the TMOKE signal, is generally similar to plasmon induced transparency (PIT) phenomenon observed in plasmonic multilayered structures. We entitle this novel effect as “second resonance of TMOKE signal”. More importantly, the occurrence angle and magnitude of the second peak can be controlled by varying the thickness and material of separating layer between two MP parts. Also, the dispersion diagram of the heterostructure shows this coupling so that two branches convert into four branches by reducing the thickness of spacer. Furthermore, coupled oscillators model confirms emergence of the second peak in the TMOKE signal. These results can offer great promise for increasing sensitivity of conventional magneto-optical refractive index sensors.