Plants (Aug 2024)

Construction of Optimal Regeneration System for Chrysanthemum ‘11-C-2’ Stem Segment with Buds

  • Qingbing Chen,
  • Kang Gao,
  • Bo Pan,
  • Yaoyao Wang,
  • Lijie Chen,
  • Junjun Yu,
  • Lili Wang,
  • Yongming Fan,
  • Haiying Li,
  • Conglin Huang

DOI
https://doi.org/10.3390/plants13172403
Journal volume & issue
Vol. 13, no. 17
p. 2403

Abstract

Read online

Chrysanthemum morifolium ‘11-C-2’ is a variety of chrysanthemums with high ornamental and tea value, experiencing significant market demand. However, as cultivation areas expand, issues such as viral infection, germplasm degradation, low proliferation coefficient, and slow proliferation rate arise, necessitating the establishment of an efficient in vitro regeneration system. This study, based on the principles of orthogonal experimental design, explored the regeneration system of Chrysanthemum cultivar ‘11-C-2’ using sterile seedlings. The research focused on three key stages: adventitious bud differentiation, rooting culture, and acclimatization–transplantation, employing shoot-bearing stem segments and leaves as explants. The findings indicate that the optimal explant for the Chrysanthemum ‘11-C-2’ sterile seedlings is the shoot-bearing stem segment. The best medium for adventitious bud differentiation was determined to be MS supplemented with 1.5 mg/L 6-BA and 0.5 mg/L NAA. Bud differentiation began on day 17 with a 100% differentiation rate, completing around day 48. The maximum differentiation coefficient reached 87, with an average of 26.67. The adventitious buds were then cultured for rooting in the optimal medium of 1/2 MS supplemented with 0.1 mg/L NAA. Rooting was initiated on day 4 and was completed by day 14, achieving a rooting rate of 97.62%. After a 5-day acclimatization under natural light, the rooted seedlings were transplanted into a growth substrate with a peat-to-vermiculite ratio of 1:2. The plants exhibited optimal growth, with a transplantation survival rate of 100%. The findings provide data support for the efficient large-scale propagation of ‘11-C-2’ and lay the foundation for germplasm preservation and genetic transformation research of tea chrysanthemums.

Keywords