Condensed Matter Physics (Jan 2013)

Structure and thermodynamics of the primitive model electrolyte in a charged matrix: The evaluation of the Madden-Glandt approximation

  • M. Lukšič,
  • B. Hribar-Lee

DOI
https://doi.org/10.5488/CMP.16.43803
Journal volume & issue
Vol. 16, no. 4
p. 43803

Abstract

Read online

We compared the results of the Madden-Glandt (MG) integral equation approximation for partly-quenched systems with the commonly accepted formalism of Given and Stell (GS). A studied system was a +1:-1 restricted primitive model (RPM) electrolyte confined in a quenched +1:-1 RPM matrix. A renormalization scheme was proposed for the set of MG replica Ornstein-Zernike equations. Long-ranged direct and total correlation functions, describing the interactions between the annealed electrolyte species within the same replicas and between the annealed and matrix particles, appeared to be the same for MG and GS approach. Both versions of the theory give very similar results for the structure and thermodynamics of an annealed subsystem. Differences between excess internal energy, excess chemical potential, and isothermal compressibility become pronounced only at high concentrations of matrix particles.

Keywords