Известия Иркутского государственного университета: Серия "Математика" (Dec 2020)
Approximate and Exact Solutions to the Singular Nonlinear Heat Equation with a Common Type of Nonlinearity
Abstract
The paper deals with the problem of the motion of a heat wave with a specified front for a general nonlinear parabolic heat equation. An unknown function depends on two variables. Along the heat wave front, the coefficient of thermal conductivity and the source function vanish, which leads to a degeneration of the parabolic type of the equation. This circumstance is the mathematical reason for the appearance of the considered solutions, which describe perturbations propagating along the zero background with a finite velocity. Such effects are generally atypical for parabolic equations. Previously, we proved the existence and uniqueness theorem for the problem considered in this paper. Still, it is local and does not allow us to study the properties of the solution beyond the small neighborhood of the heat wave front. To overcome this problem, the article proposes an iterative method for constructing an approximate solution for a given time interval, based on the boundary element approach. Since it is usually not possible to prove strict convergence theorems of approximate methods for nonlinear equations of mathematical physics with a singularity, verification of the calculation results is relevant. One of the traditional ways is to compare them with exact solutions. In this article, we obtain and study an exact solution of the required type, the construction of which is reduced to integrating the Cauchy problem for an ODE. We obtained some qualitative properties, including an interval estimation of the wave amplitude in one particular case. The performed calculations show the effectiveness of the developed computational algorithm, as well as the compliance of the results of calculations with qualitative analysis.
Keywords