Propagation and survival of frequency-bin entangled photons in metallic nanostructures
Olislager Laurent,
Kubo Wakana,
Tanaka Takuo,
Ungureanu Simona,
Vallée Renaud A. L.,
Kolaric Branko,
Emplit Philippe,
Massar Serge
Affiliations
Olislager Laurent
OPERA–Photonique, CP 194/5, Université libre de
Bruxelles, av. F.D. Roosevelt 50, Brussels B-1050, Belgium
Kubo Wakana
RIKEN, Metamaterials Laboratory 2-1 Hirosawa, Wako,
Saitama, Japan
Tanaka Takuo
RIKEN, Metamaterials Laboratory 2-1 Hirosawa, Wako,
Saitama, Japan
Ungureanu Simona
CNRS, University Bordeaux, CRPP, UPR 8641, 115 av.
Schweitzer, Pessac F-33600, France
Vallée Renaud A. L.
CNRS, University Bordeaux, CRPP, UPR 8641, 115 av.
Schweitzer, Pessac F-33600, France
Kolaric Branko
Laboratoire Interfaces and Fluides Complexes, Centre
d’Innovation et de Recherche Laboratoire Interfaces and Fluides Complexes,
Centre d’Innovation et de Recherche en Materiaux Polymeres, University of Mons,
20 Place du Parc, B-7000 Mons, Belgium
Emplit Philippe
OPERA–Photonique, CP 194/5, Université libre de
Bruxelles, av. F.D. Roosevelt 50, Brussels B-1050, Belgium
Massar Serge
Laboratoire d’Information Quantique, CP 225, Université
libre de Bruxelles, av. F.D. Roosevelt 50, Brussels B-1050, Belgium
We report on the design of two plasmonic nanostructures and the propagation of frequency-bin entangled photons through them. The experimental findings clearly show the robustness of frequency-bin entanglement, which survives after interactions with both a hybrid plasmo-photonic structure, and a nano-pillar array. These results confirm that quantum states can be encoded into the collective motion of a many-body electronic system without demolishing their quantum nature, and pave the way towards applications of plasmonic structures in quantum information.