Water (Apr 2024)

Modification of Polylactide-poly (butylene adipate-co-terephthalate) (PLA/PBAT) Mixed-Matrix Membranes (MMMs) with Green Banana Peel Additives for Oil Wastewater Treatment

  • Maryam Y. Ghadhban,
  • Khalid T. Rashid,
  • Adnan A. Abdulrazak,
  • Israa Taha Ibrahim,
  • Qusay F. Alsalhy,
  • Zaidoon M. Shakor,
  • Ihsan Hamawand

DOI
https://doi.org/10.3390/w16071040
Journal volume & issue
Vol. 16, no. 7
p. 1040

Abstract

Read online

Ultrafiltration membranes are often considered a highly efficient technique for purifying oily wastewater. The primary objective of this research was to improve the performance and antifouling properties of PLA/PBAT membranes used in oily wastewater treatment by incorporating banana peel (BP) nanoparticles. Various characterization techniques, including field emission scanning electron microscopy (FESEM), wettability analysis, pure water flux measurement, porosity assessment, tensile analysis, and FTIR analysis, were employed to describe the prepared membranes. The results of the FT-IR test revealed that BP nanoparticles were effectively integrated into the PLA/PBAT membrane matrix. The contact angle decreased from 73.7° for the pristine PLA/PBAT membrane to 38.99° for the membrane incorporating 0.05 wt.% BP-NPs, indicating that the nanoparticles enhanced the hydrophilic characteristics of the membranes. A similar trend was observed for the pure water flux of PLA/PBAT/BP membranes, suggesting that membranes with a BP-NP concentration of 0.05 weight percent exhibited the highest pure water flux. This improvement can be attributed to the synergistic effects of the nanoparticles. Additionally, the presence of BP-NPs enhanced the mechanical properties of the membranes. Finally, an ultrafiltration system using oily wastewater as feed was employed to evaluate the performance of the prepared membranes. The finding demonstrated that PLA/PBAT/BP membranes exhibited a higher flux and a greater oil removal efficiency of 105.3 L/m2h and 95.2% compared to neat PLA/PBAT membranes (62 L/m2h and 88%), respectively.

Keywords