Journal of Orthopaedic Surgery and Research (Jan 2021)
miR-107 affects cartilage matrix degradation in the pathogenesis of knee osteoarthritis by regulating caspase-1
Abstract
Abstract Background Knee osteoarthritis (KOA) seriously affects the quality of life of KOA patients. This study aimed to investigate whether miR-107 could regulate KOA through pyroptosis to affect collagen protein secreted by chondrocytes through IL-1β. Methods The proliferation of chondrocytes was detected by CCK-8 assay. RT-qPCR analysis was used to identify miR-107 expression and transfection effects. The expression of Col II, IL-1β, IL-18, and MMP13 in supernatant of chondrocytes or chondrocytes was detected by ELISA assay and western blot analysis. The pyroptosis of chondrocytes was analyzed by TUNEL assay and the expression of pyroptosis-related proteins was analyzed by western blot. Luciferase reporter assay confirmed the relation of miR-107 to caspase-1. Results The proliferation of chondrocytes was decreased after LPS induction and further decreased by treatment of ATP. Single LPS treatment for chondrocytes downregulated the Col II expression while upregulated the expression of IL-1β, IL-18, and MMP-13, which was further changed by ATP treatment. miR-107 expression was decreased in chondrocytes induced by LPS and further decreased in chondrocytes induced by LPS and ATP. In addition, miR-107 overexpression increased the proliferation and decreased the pyroptosis of chondrocytes induced by LPS and ATP. miR-107 overexpression upregulated the Col II expression while down-regulated the expression of IL-1β, IL-18, and MMP-13 in supernatant of chondrocytes or chondrocytes induced by LPS and ATP. miR-107 overexpression down-regulated the expression of caspase-1, c-caspase-1, GSDMD-N, and TLR4 in chondrocytes induced by LPS and ATP. Furthermore, miR-107 directly targeted caspase-1. Conclusions miR-107 can protect against KOA by downregulating caspase-1 to decrease pyroptosis, thereby promoting collagen protein secreted by chondrocytes by down-regulating IL-1β.
Keywords