Zdorovʹe Rebenka (Oct 2019)

Pharmaceutical effect on the biofilm dispersion. Nitric oxide donors

  • А.Е. Abaturov,
  • Т.А. Kryuchko

DOI
https://doi.org/10.22141/2224-0551.14.7.2019.184626
Journal volume & issue
Vol. 14, no. 7
pp. 450 – 457

Abstract

Read online

The scientific review deals with the modern ideas about the importance of low concentrations of nitric oxide in the process of dispersing and eradicating of bacterial biofilms. For writing the article, information was searched using Scopus, Web of Science, MedLine, PubMed, Google Scholar, EMBASE, Global Health, The Cochrane Library, CyberLeninka. The paper highlights the value of nitric oxide in the development of relapses of respiratory infectious-inflammatory diseases. It is emphasized that the ability of nitric oxide at high (micromolar) concentrations can become a highly toxic compound for bacteria and an important component of the nonspecific protection of a macroorganism from pathogenic microorganisms, and at low (nanomolar) concentrations can act as a signaling molecule. The ability of nitrogen monoxide to disperse the biofilm of bacteria through increased expression or activity of proteins associated with the motility of bacteria pili, rhamnolipids is described. The characteristics of the main donors of nitric oxi­de and molecular platforms that can be used for their delivery to the macroorganism are presented. The main groups of nitric oxide donors are described, such as organic nitrates, nitrosylated metal compounds, diazenium diolates (N-diazeniumdiolate — NONOate) and S-nitrosothiols (S-nitrosothiol — RSNO). It is indicated that nitric oxide donors enhance the dispersion of biofilms and contribute to an increase in the antibacterial activity of antibiotics. The paper characterizes the molecular platforms for the delivery and optimization of the nitric oxide release regime: inorganic and polymer nanoparticles, organometallic coordination polymers, dendrimers, liposomes, micelles. The possibility of using these compounds to develop new drugs that will be effective in treating diseases associated with the formation of biofilms by pathogenic bacteria is underlined.

Keywords