Mathematical Biosciences and Engineering (Aug 2022)

Duplex PD inertial damping control paradigm for active power decoupling of grid-tied virtual synchronous generator

  • Sue Wang,
  • Jing Li,
  • Saleem Riaz ,
  • Haider Zaman,
  • Pengfei Hao,
  • Yiwen Luo ,
  • Al-Sharef Mohammad,
  • Ahmad Aziz Al-Ahmadi,
  • NasimUllah

DOI
https://doi.org/10.3934/mbe.2022560
Journal volume & issue
Vol. 19, no. 12
pp. 12031 – 12057

Abstract

Read online

The growth of distributed generation significantly reduces the synchronous generators' overall rotational inertia, causing large frequency deviation and leading to an unstable grid. Adding virtual rotational inertia using virtual synchronous generators (VSG) is a promising technique to stabilize grid frequency. Due to coupled nature of frequency and active output power in a grid-tied virtual synchronous generator (GTVSG), the simultaneous design of transient response and steady state error becomes challenging. This paper presents a duplex PD inertial damping control (DPDIDC) technique to provide active power control decoupling in GTVSG. The power verses frequency characteristics of GTVSG is analyzed emphasizing the inconsistencies between the steady-state error and transient characteristics of active output power. The two PD controllers are placed in series with the generator's inertia forward channel and feedback channel. Finally, the performance superiority of the developed control scheme is validated using a simulation based study.

Keywords