Bioengineering (Jan 2024)

Time-Series Anomaly Detection Based on Dynamic Temporal Graph Convolutional Network for Epilepsy Diagnosis

  • Guanlin Wu,
  • Ke Yu,
  • Hao Zhou,
  • Xiaofei Wu,
  • Sixi Su

DOI
https://doi.org/10.3390/bioengineering11010053
Journal volume & issue
Vol. 11, no. 1
p. 53

Abstract

Read online

Electroencephalography (EEG) is typical time-series data. Designing an automatic detection model for EEG is of great significance for disease diagnosis. For example, EEG stands as one of the most potent diagnostic tools for epilepsy detection. A myriad of studies have employed EEG to detect and classify epilepsy, yet these investigations harbor certain limitations. Firstly, most existing research concentrates on the labels of sliced EEG signals, neglecting epilepsy labels associated with each time step in the original EEG signal—what we term fine-grained labels. Secondly, a majority of these studies utilize static graphs to depict EEG’s spatial characteristics, thereby disregarding the dynamic interplay among EEG channels. Consequently, the efficient nature of EEG structures may not be captured. In response to these challenges, we propose a novel seizure detection and classification framework—the dynamic temporal graph convolutional network (DTGCN). This method is specifically designed to model the interdependencies in temporal and spatial dimensions within EEG signals. The proposed DTGCN model includes a unique seizure attention layer conceived to capture the distribution and diffusion patterns of epilepsy. Additionally, the model incorporates a graph structure learning layer to represent the dynamically evolving graph structure inherent in the data. We rigorously evaluated the proposed DTGCN model using a substantial publicly available dataset, TUSZ, consisting of 5499 EEGs. The subsequent experimental results convincingly demonstrated that the DTGCN model outperformed the existing state-of-the-art methods in terms of efficiency and accuracy for both seizure detection and classification tasks.

Keywords