Journal of Cotton Research (Jun 2023)

Effects of soil potassium levels on dry matter and nutrient accumulation and distribution in cotton

  • Jingjing SHAO,
  • Helin DONG,
  • Yinan JIN,
  • Pengcheng LI,
  • Miao SUN,
  • Weina FENG,
  • Cangsong ZHENG

DOI
https://doi.org/10.1186/s42397-023-00145-y
Journal volume & issue
Vol. 6, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Background Potassium (K) is an essential nutrient for plant growth and development. However, plant fertilization ignoring the soil K level is very likely to cause excessive fertilizer use, and further arouse a series of side effects. This study investigated the response of cotton growth to different soil K levels and the uptake of major nutrients, aiming to evaluate the appropriate K supply level for cotton growth. Using a random block design with 6 soil K levels, we conducted 18 micro-zones field experiments over two continuous years. The soil available K concentration of each treatment was K1 (99.77–100.90 mg·kg−1), K2 (110.90–111.26 mg·kg−1), K3 (123.48–128.88 mg·kg−1), K4 (140.13–145.10 mg·kg−1), K5 (154.43–155.38 mg·kg−1), and K6 (165.77–168.75 mg·kg−1). Cotton nutrient contents, soil nutrient contents, accumulation and distribution of dry matter in cotton were determined, and the relationships between K content in soil and plants and dry matter accumulation were analyzed. Results The soil K content had a significantly positive relationship with dry matter and K accumulation in cotton plants. There were significant differences in dry matter accumulation, single-plant seed cotton yield, mineral nutrient uptake and the proportion of K accumulation in reproductive organs among different soil K levels. The results showed that there was significant difference between K4 and lower K level treatments (K1 and K2), but no significant difference between K4 and higher K level treatments (K5 and K6) in dry matter, single-plant seed cotton yield, or accumulation, distribution and seed cotton production efficiency of N, P and K. Conclusion The soil K level of K4 was able to provide sufficient K for cotton growth in our experiment. Therefore, when the soil K level reached 140.13 mg·kg−1, further increasing the soil K concentration no longer had a significant positive effect on cotton growth.

Keywords