EJNMMI Research (Jan 2019)

Phase analysis single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) detects dyssynchrony in myocardial scar and increases specificity of MPI

  • John P. Bois,
  • Chris Scott,
  • Panithaya Chareonthaitawee,
  • Raymond J. Gibbons,
  • Martin Rodriguez-Porcel

DOI
https://doi.org/10.1186/s13550-019-0476-y
Journal volume & issue
Vol. 9, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background Myocardial perfusion imaging (MPI) with single-photon emission computed tomography (SPECT) is commonly used to assess patients with cardiovascular disease. However, in certain scenarios, it may have limited specificity in the identification of hemodynamically significant coronary artery disease (e.g., false positive), potentially resulting in additional unnecessary testing and treatment. Phase analysis (PA) is an emerging, highly reproducible quantitative technology that can differentiate normal myocardial activation (synchrony) from myocardial scar (dyssynchrony). The objective of this study is to determine if PA can improve the specificity SPECT MPI. Methods An initial cohort of 340 patients (derivation cohort), referred for SPECT-MPI, was prospectively enrolled. Resting MPI studies were assessed for resting perfusion defects (scar). These were utilized as the reference standard for scar. Subsequently, we collected a second independent validation cohort of 138 patients and tested the potential of PA to reclassify patients for the diagnosis of “scar” or “no scar.” Patients were assigned to three categories depending upon their pre-test probability of scar based on multiple clinical and imaging parameters: ≤ 10% (no scar), 11–74% (indeterminate), and ≥ 75% (scar). The ability of PA variables to reclassify patients with scar to a higher group and those without scar to a lower group was then determined using the net reclassification index (NRI). Results Entropy (≥ 59%) was independently associated with scar in both patient cohorts with an odds ratio greater than five. Furthermore, when added to multiple clinical/imaging variables, the use of entropy significantly improved the area under the curve for assessment of scar (0.67 vs. 0.59, p = 0.04). The use of entropy correctly reclassified 24% of patients without scar, by clinical model, to a lower risk category (as determined by pre-test probability) with an overall NRI of 18% in this validation cohort. Discussion The use of PA entropy can improve the specificity of SPECT MPI and may serve as a useful adjunctive tool to the interpreting physician. The current study determined the optimal PA parameters to detect scar (derivation cohort) and applied these parameters to a second, independent, patient group and noted that entropy (≥ 59%) was independently associated with scar in both patient cohorts. Therefore, PA, which requires no additional imaging time or radiation, enhances the diagnostic capabilities of SPECT MPI. Conclusion The use of PA entropy significantly improved the specificity of SPECT MPI and could influence the labeling of a patient as having or not having myocardial scar and thereby may influence not only diagnostic reporting but also potentially prognostic determination and therapeutic decision-making.

Keywords