HortTechnology (Jun 2020)

Evaluation and Comparison of Postharvest Cooling Methods on the Microbial Quality and Storage of Florida Peaches

  • Jaysankar De,
  • Bruna Bertoldi ,
  • Mohammad Jubair ,
  • Alan Gutierrez,
  • Jeffery K. Brecht ,
  • Steven A. Sargent ,
  • Keith R. Schneider

DOI
https://doi.org/10.21273/HORTTECH04609-20
Journal volume & issue
Vol. 30, no. 4
pp. 504 – 509

Abstract

Read online

Florida peaches (Prunus persica) typically are picked and placed in a cold room on the day of harvest, then packed and shipped the next day. This room cooling (RC) is slow, requiring ≈24 hours or more for the fruit to reach optimal temperature (6 to 7 °C). There is currently limited research on the effect of cooling practices on microbial quality of peaches, yet this study is essential for decision making in areas such as upgrading packing house facilities and the implementation of improved handling procedures. This research compared the efficacies of postharvest cooling by RC, forced-air cooling (FAC), and hydrocooling with sanitizer (HS) treatment of peaches to reduce their surface microbial population and to determine the effect on shelf life and microbial quality. Three trials for RC and two trials each for FAC and HS were performed. Following cooling, fruit were stored at 1 °C. The average aerobic plate count (APC) from field samples was 5.29 log cfu/peach, which remained unchanged after RC or FAC but was reduced significantly (P < 0.05) to 4.63 log cfu/peach after HS. The average yeast and mold counts (Y&M) from field samples (6.21 log cfu/peach) were reduced highly significantly (P < 0.001) to 4.05 log cfu/peach after HS. Hydrocooling significantly (P < 0.05) reduced the APC and Y&M counts from the peaches and showed promise in maintaining the microbiological quality of the fruit throughout storage. However, at the end of the 21-day storage period, there was no significant difference in APC or Y&M counts from peaches, irrespective of the cooling methods. Peaches that went through the hydrocooling process and were subsequently packed showed an increase (P < 0.05) in both APC and Y&M counts, while fruit that were not hydrocooled showed no such increase. Information obtained will be used to recommend the best temperature management practices for maintaining the postharvest quality of peaches. A detailed cost-benefit analysis of different cooling methods and the time interval between harvest and shipment are both necessary for a more conclusive recommendation.

Keywords