Remote Sensing (Oct 2023)

Preliminary Assessment of BDS Radio Occultation Retrieval Quality and Coverage Using FY-3E GNOS II Measurements

  • Congliang Liu,
  • Mi Liao,
  • Yueqiang Sun,
  • Xi Wang,
  • Jiahui Liang,
  • Xiuqing Hu,
  • Peng Zhang,
  • Guanglin Yang,
  • Yan Liu,
  • Jinsong Wang,
  • Weihua Bai,
  • Qifei Du,
  • Xiangguang Meng,
  • Peng Hu,
  • Guangyuan Tan,
  • Xianyi Wang,
  • Junming Xia,
  • Feixiong Huang,
  • Cong Yin,
  • Yuerong Cai,
  • Wei Li,
  • Peixian Li,
  • Gottfried Kirchengast

DOI
https://doi.org/10.3390/rs15205011
Journal volume & issue
Vol. 15, no. 20
p. 5011

Abstract

Read online

The FengYun-3E Global Navigation Satellite System (GNSS) occultation sounder II (FY-3E GNOS II) was launched on 5 July 2021. For the first time, based on the new GNOS II sensor, this mission realizes radio occultation (RO) and reflectometry observations using the navigation signals from the third-generation BeiDou System (BDS-3), and it is hence important to assess and analyze the BDS-3 remote sensing performances relative to other systems. Here, we assessed FY-3E GNOS II RO atmospheric retrievals by inter-comparing with corresponding data from the NCEP FNL global atmospheric analysis and FY-3D GNOS mission. The GNOS RO data quality and consistency of the different FY-3 meteorological satellites, i.e., FY-3D and FY-3E, as well as different GNSS systems (GPS, BDS-2, BDS-3) were analyzed. We find that the FY-3E GNOS II RO data exhibit better quality than FY-3D GNOS, particularly in the number, penetration height toward surface, and global coverage by BDS RO profiles, due to the integration of BDS-2 and BDS-3. Additionally, comparing with co-located NCEP FNL analysis profiles, the mean difference (and standard deviation) of the FY-3E GNOS II RO atmospheric refractivity profile retrievals is found to be smaller than 0.2% (and 1%), in the upper troposphere and lower stratosphere, from 5 to 30 km, and remains consistent at this accuracy and precision level with the FY-3D GNOS RO data. These features provide clear evidence for a high utility of the new GNOS II RO data for weather and climate research and applications.

Keywords