Applied Sciences (Feb 2022)

Analysis, Simulations, and Experiments for Far-Field Fourier Ptychography Imaging Using Active Coherent Synthetic-Aperture

  • Mingyang Yang,
  • Xuewu Fan,
  • Yuming Wang,
  • Hui Zhao

DOI
https://doi.org/10.3390/app12042197
Journal volume & issue
Vol. 12, no. 4
p. 2197

Abstract

Read online

Fourier ptychography (FP) is a powerful phase retrieval method that can be used to reconstruct missing high-frequency details and high-space-bandwidth products in microscopy. In this study, we further advanced the application of FP in microscopic imaging to the field of macroscopic far-field imaging, incorporating camera scanning for spatial resolution improvement. First, on the basis of the Fraunhofer diffraction mechanism and the transmission imaging model, we found the analysis of the associated theoretical fundamentals via simulations and experiments to be crucially relevant to the far-field of FP imaging. Second, we built an experimental device with long-distance imaging and experimentally demonstrated the relationship between the spectrum overlap ratio and the reconstructed high-resolution image. The simulation and experimental results showed that an overlap ratio higher than 50% had a good reconstruction effect. Third, camera scanning was used to obtain low-resolution intensity images in this study, for which the scanning range was wide and spherical wave illumination was satisfied, and therefore different positions corresponded to different aberrations of low-resolution intensity images, and even different positions of the same image had aberration differences, leading to inconsistencies in the aberrations of different images. Therefore, in the reconstruction process, we further overcame the effect of the inconsistency of aberrations of different images using the partition reconstruction method, which involves cutting the image into smaller parts for reconstruction. Finally, with the proposed partition reconstruction algorithm, we were able to resolve 40 μm line width of GBA1 resolution object and obtain a spatial resolution gain of 4× with a working distance of 2 m.

Keywords