Scientific Reports (May 2022)
PCBP1 is associated with rheumatoid arthritis by affecting RNA products of genes involved in immune response in Th1 cells
Abstract
Abstract Rheumatoid arthritis (RA) is an autoimmune disease characterized by persistent synovitis, in which T helper 1 (Th1) can promote the development of a pro-inflammatory microenvironment. Poly(rC)-binding protein 1 (PCBP1) has been identified as a promising biomarker of RA, while its molecular mechanisms in RA development are unknown. As a canonical RNA binding protein, we propose that PCBP1 could play roles in RA by affecting both expression and alternative splicing levels in Th1 cells. Here, microarray datasets (GSE15573 and GSE23561), including 102 peripheral blood mononuclear cell samples from 39 RA patients and 63 controls, were used to evaluate the PCBP1 expression changes in RA patients. High throughput sequencing data (GSE84702) of iron driven pathogenesis in Th1 cells were downloaded and reanalyzed, including two Pcbp1 deficiency samples and two control samples in Th1 cells. In addition, CLIP-seq data of PCBP1 in Jurkat T cells was also analyzed to investigate the regulatory mechanisms of PCBP1. We found PCBP1 were down-regulated in RA specimens compared with control. The result of differentially expressed genes (DEGs) showed that Pcbp1 silencing in Th1 cells affected the expression of genes involved in immune response pathway. Alternative splicing analysis also revealed that PCBP1-regulated alternative splicing genes (RASGs) were enriched in TNF-a/NF-κB signaling pathway, T cell activation, T cell differentiation and T cell differentiation associated immune response pathways, which were highly associated with RA. DEGs and RASGs by Pcbp1 deficiency in mice were validated in PBMCs specimens of RA patients by RT-qPCR. Investigation of the CLIP-seq data revealed PCBP1 preferred to bind to 3′UTR and intron regions. PCBP1-bound genes were also significantly associated with RASGs, identifying 102 overlapped genes of these two gene sets. These genes were significantly enriched in several immune response related pathways, including myeloid cell differentiation and positive regulation of NF-κB transcription factor activity. Two RA-related genes, PML and IRAK1, were screened from the above immune related pathways. These results together support our hypothesis that PCBP1 can regulate the expression of genes involved in immune response pathway, and can bind to and regulate the alternative splicing of immune response related genes in immune T cells, and ultimately participate in the molecular mechanism of RA, providing new research ideas and directions for clinical diagnosis and treatment.