Oxidative stress induced protein aggregation via GGCT produced pyroglutamic acid in drug resistant glioblastoma
Deanna Tiek,
Xiao Song,
Xiaozhou Yu,
Runxin Wu,
Rebeca Iglesia,
Alicia Catezone,
Katy McCortney,
Jordain Walshon,
Craig Horbinski,
Pouya Jamshidi,
Rudolph Castellani,
Robert Vassar,
Jason Miska,
Bo Hu,
Shi-Yuan Cheng
Affiliations
Deanna Tiek
The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Corresponding author
Xiao Song
The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
Xiaozhou Yu
The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
Runxin Wu
The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
Rebeca Iglesia
The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
Alicia Catezone
Departments of Pathology and Neurological Surgery, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
Katy McCortney
Departments of Pathology and Neurological Surgery, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
Jordain Walshon
Departments of Pathology and Neurological Surgery, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
Craig Horbinski
Departments of Pathology and Neurological Surgery, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
Pouya Jamshidi
Department of Pathology, Northwestern University Feinberg School of Medicine, The Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Chicago, IL 60611, USA
Rudolph Castellani
Department of Pathology, Northwestern University Feinberg School of Medicine, The Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Chicago, IL 60611, USA
Robert Vassar
The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, The Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Chicago, IL 60611, USA
Jason Miska
Department of Neurosurgery, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
Bo Hu
The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
Shi-Yuan Cheng
The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Corresponding author
Summary: Drug resistance is a major barrier to cancer therapies and remains poorly understood. Recently, non-mutational mechanisms of drug resistance have been proposed where a more plastic metabolic response can play a major role. Here, we show that upon drug resistance, glioblastoma (GBM) cells have increased oxidative stress, mitochondria function, and protein aggregation. Gamma (γ)-glutamylcyclotranserase (GGCT), an enzyme in the γ-glutamyl cycle for glutathione production, located on chromosome 7 which is commonly amplified in GBM is also increased upon resistance. We further observe that the byproduct of GGCT—pyroglutamic acid—can bind aggregating proteins and that genetic and pharmacological inhibition of GGCT prevents protein aggregation. Finally, we found increased protein aggregation, GGCT expression, and pyroglutamic acid staining in recurrent GBM patient samples, adjacent non-tumor brain, and Alzheimer’s brains. These findings suggest a new pathway for protein aggregation within drug resistant brain cancer that should be further studied in other brain disorders.