Water Research X (May 2020)
Practical implementation of true on-site water recycling systems for hand washing and toilet flushing
Abstract
On-site wastewater reuse can improve global access to clean water, sanitation and hygiene. We developed a treatment system (aerated bioreactor, ultrafiltration membrane, granular activated carbon and electrolysis for chlorine disinfection) that recycles hand washing and toilet flush water.Three prototypes were field-tested in non-sewered areas, one in Switzerland (hand washing) and two in South Africa (hand washing, toilet flushing), over periods of 63, 74 and 94 days, respectively.We demonstrated that the system is able to recycle sufficient quantities of safe and appealing hand washing and toilet flush water for domestic or public use in real-life applications. Chemical contaminants were effectively removed from the used water in all prototypes. Removal efficiencies were 99.7% for the chemical oxygen demand (COD), 98.5% for total nitrogen (TN) and 99.9% for phosphate in a prototype treating hand washing water, and 99.8% for COD, 95.7% for TN and 89.6% for phosphate in a prototype treating toilet flush water. While this system allowed for true recycling for the same application, most on-site wastewater reuse systems downcycle the treated water, i.e., reuse it for an application requiring lower water quality. An analysis of 18 selected wastewater reuse specifications revealed that at best these guidelines are only partially applicable to innovative recycling systems as they are focused on the downcycling of water to the environment (e.g., use for irrigation). We believe that a paradigm shift is necessary and advocate for the implementation of risk-based (and thus end-use dependent) system performance targets to evaluate water treatment systems, which recycle and not only downcycle water.