An Automated Method of 3D Facial Soft Tissue Landmark Prediction Based on Object Detection and Deep Learning
Yuchen Zhang,
Yifei Xu,
Jiamin Zhao,
Tianjing Du,
Dongning Li,
Xinyan Zhao,
Jinxiu Wang,
Chen Li,
Junbo Tu,
Kun Qi
Affiliations
Yuchen Zhang
Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, 98 XiWu Road, Xi’an 710004, China
Yifei Xu
Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi’an 710004, China
Jiamin Zhao
Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, 98 XiWu Road, Xi’an 710004, China
Tianjing Du
Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, 98 XiWu Road, Xi’an 710004, China
Dongning Li
Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, 98 XiWu Road, Xi’an 710004, China
Xinyan Zhao
Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, 98 XiWu Road, Xi’an 710004, China
Jinxiu Wang
Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, 98 XiWu Road, Xi’an 710004, China
Chen Li
Shaanxi Provincial Key Laboratory of Big Data Knowledge Engineering, School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
Junbo Tu
Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, 98 XiWu Road, Xi’an 710004, China
Kun Qi
Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, 98 XiWu Road, Xi’an 710004, China
Background: Three-dimensional facial soft tissue landmark prediction is an important tool in dentistry, for which several methods have been developed in recent years, including a deep learning algorithm which relies on converting 3D models into 2D maps, which results in the loss of information and precision. Methods: This study proposes a neural network architecture capable of directly predicting landmarks from a 3D facial soft tissue model. Firstly, the range of each organ is obtained by an object detection network. Secondly, the prediction networks obtain landmarks from the 3D models of different organs. Results: The mean error of this method in local experiments is 2.62±2.39, which is lower than that in other machine learning algorithms or geometric information algorithms. Additionally, over 72% of the mean error of test data falls within ±2.5 mm, and 100% falls within 3 mm. Moreover, this method can predict 32 landmarks, which is higher than any other machine learning-based algorithm. Conclusions: According to the results, the proposed method can precisely predict a large number of 3D facial soft tissue landmarks, which gives the feasibility of directly using 3D models for prediction.