Zhongguo Jianchuan Yanjiu (Dec 2017)
Optimization of wave energy capture of wave-powered navigational lighting buoys of seadromes
Abstract
[Objectives] This paper proposes an optimized design for wave-power navigational lighting buoys of seadromes.[Methods] Based on the theory of three-dimensional potential flow, the buoyant motion response of a buoy is calculated. A type of array of wave-power navigational lighting buoys located in an offshore seadrome is proposed,and a procedure for the design optimization of its component buoys is presented. Matching the best Power Take-Off(PTO) damping, the diameter to draft ratio and array distance with the best energy capture width ratio are acquired, and the energy capture for the short-term forecast of the buoy array is accomplished. On this basis, combined with the actual sea conditions, energy capture for the long-term forecast of an individual buoy is accomplished. The influence of the buoy diameter, buoy draft and array distance on the energy capture width ratio is discussed.[Results] The results show that the energy capture width ratio is at its greatest when the diameter to draft ratio is between 2.4-2.6; the smaller the distance between array buoys, the greater the energy capture width of each buoy.[Conclusions] The results can provide a reference and suggestions for the optimization of the design of wave energy generation for arrays buoy.
Keywords