Separations (Jan 2023)
Bioactive Chemical Constituents of <i>Matthiola longipetala</i> Extract Showed Antioxidant, Antibacterial, and Cytotoxic Potency
Abstract
The exploration of bioactive compounds from natural resources attracts the attention of researchers and scientists worldwide. M. longipetala is an annual aromatic herb that emits a pleasant odor during the night. Regarding the chemical composition and biological characteristics, M. longipetala extracts are poorly studied. The current study aimed to characterize the chemical composition of M. longipetala methanol extract using GC-MS and determine its biological potencies, including its capacity for cytotoxicity and antioxidant and antibacterial activities. In this approach, 37 components were identified, representing 99.98% of the total mass. The major chemical components can be classified as oxygenated hydrocarbons (19.15%), carbohydrates (10.21%), amines (4.85%), terpenoids (12.71%), fatty acids and lipids (50.8%), and steroids (2.26%). The major identified compounds were ascaridole epoxide (monoterpene, 12.71%) and methyl (E)-octadec-11-enoate (ester of fatty acid, 12.21%). The extract of M. longipetala showed substantial antioxidant activity. Based on the DPPH and ABTS scavenging, the antioxidant activity of the extracted components of M. longipetala revealed that leaf extract is the most effective with IC50 values of 31.47 and 28.94 mg/L, respectively. On the other hand, the extracted plant showed low antibacterial activities against diverse bacterial species, viz., Escherichia coli, Klebsiella pneumonia, Staphylococcus epidermidis, S. haemolyticus, and S. aureus. The most potent antibacterial results were documented for leaf and flower extracts against E. coli and S. aureus. Additionally, the extract’s effectiveness against HepG2 cells was evaluated in vitro using the measures of MTT, DNA fragmentation, and cell proliferation cycle, where it showed considerable activity. Therefore, we can conclude that M. longipetala extract displayed improvement in cytocompatibility and cell migration properties. In conclusion, M. longipetala could be considered a potential candidate for various bioactive compounds with promising biological activities. However, further characterization of the identified compounds, particularly the major compounds, is recommended to evaluate their efficacy, modes of action, and safety.
Keywords