Applied Sciences (May 2025)
Study on Optimization of Filling Schemes and Surface Stability in Multi-Mining Right Intersection Areas
Abstract
Due to the intersection of three mining rights in a mining area, the stability of the rock mass is mutually affected after mining operations. To study the optimal backfill ratio and the surface stability after backfilling in the adjacent goaf areas of the three mines in this mining area, a mineral deposit model is established using Rhino software. The model spans 2500 m in the east–west direction, 3000 m in the north–south direction, and ranges from an underground elevation of −610 m below. FLAC3D software was then used to analyze the surface stability under two different backfill ratios after the complete excavation of the ore body. Additionally, 52 monitoring points were set up at critical buildings and structures. The results revealed that after the complete excavation of the ore body, large-scale surface subsidence occurred in the mining area, with the main subsidence center located in the Yinzhushan mining area. Under backfill condition 1, six monitoring points experienced settlements exceeding 30.00 mm, with a maximum settlement of 53.98 mm. Under backfill condition 2, three monitoring points exceeded 30.00 mm, with a maximum settlement of 51.93 mm. The level displacement deformation at the monitoring points under both conditions met the stability requirements specified by national standards. By comparing the settlements at the monitoring points, it was determined that backfill condition 2 represents the optimal backfill ratio. This study provides a theoretical basis for practical backfilling operations in the mine.
Keywords