Applied Sciences (Nov 2024)
Experimental Evaluation of Gas-Dynamic Conditions of Heat Exchange of Stationary Air Flows in Vertical Conical Diffuser
Abstract
Conical diffusers are widely used in technical devices (gasifiers, turbines, combustion chambers) and technological processes (ejectors, mixers, renewable energy). The perfection of flow gas dynamics in a conical diffuser affects the intensity of heat and mass transfer processes, the quality of mixing/separation of working media and the flow characteristics of technical devices. These parameters largely determine the efficiency and productivity of the final product. This article presents an analysis of experimental data on the gas-dynamic characteristics of stationary air flows in a vertical, conical, flat diffuser under different initial boundary conditions. An experimental setup was created, measuring instruments were selected, and an automated data collection system was developed. Basic data on the gas dynamics of air flows were obtained using the thermal anemometry method. Experimental data on instantaneous values of air flow velocity in a diffuser for initial velocities from 0.4 m/s to 2.22 m/s are presented. These data were the basis for calculating and obtaining velocity fields and turbulence intensity fields of the air flow in a vertical diffuser. It is shown that the value of the initial flow velocity at the diffuser inlet has a significant effect on the gas-dynamic characteristics. In addition, a spectral analysis of the change in air flow velocity both by height and along the diffuser axis was performed. The obtained data may be useful for refining engineering calculations, verifying mathematical models, searching for technical solutions and deepening knowledge about the features of gas dynamics of air flows in vertical diffusers.
Keywords