Mining (Mar 2023)
Adsorption and Sequential Extraction of Copper in Technosols Prepared from Unconsolidated Mining Wastes Rich in Limestone, Bentonite, and Organic Matter
Abstract
In this work the adsorption and immobilization of copper ions of four different Technosols constructed with wastes were tested. These soils were made from mixtures of limestone wastes, organic matter, sand, and bentonite. The methods used were “batch” and columns experiments, where the soils were in contact with a Copper (Cu) rich solution for 24 h and afterwards for 24-weeks. Total concentration of adsorbed Cu, sequential extraction in the Technosols and Cu concentration in the leachates were evaluated. The results showed that the Technosols have high efficiency to rapidly immobilize Cu ions, and the percentage of adsorption varied between 87 and 99% in the batch experiment after 24 h. The sequential extraction showed that the materials used in the construction of technosols demonstrated high affinity for the metal, especially the carbonates and organic matter, which adsorbed 14–16% and 10–16% respectively of total Cu added via solution. However, most of the adsorbed Cu was found in the residual fraction (50–64%), which represented the less labile form of Cu. These results demonstrate that in addition to adsorb great part of the Cu added via solution, the Technosols immobilize Cu in a highly stable form, representing a great option for the reclamation of contaminated-Cu areas. However, the decrease in pH with time (24 weeks) showed a strong influence on the adsorption of Cu in Technosols, influencing the amount of leached copper. We therefore recommend the design of Technosols with limestone wastes, bentonite, and organic matter with periodical control of pH for fast and efficient retention of Cu.
Keywords