Safety & Fire Technology (Dec 2020)

Passenger Safety in the Warsaw Metro. Research Report

  • Robert Piec ,
  • Marcin Cisek,
  • Rafał Wróbel,
  • Michał Sowa,
  • Marcin Wiechetek,
  • Wiktor Gawroński ,
  • Barbara Szykuła-Piec,
  • Katarzyna Michalak

DOI
https://doi.org/10.12845/sft.56.2.2020.3
Journal volume & issue
Vol. 56, no. 2
pp. 40 – 60

Abstract

Read online

Aim: The article presents the results of research on the evacuation times of passengers of three different trains used by the Warsaw metro. In emergency situations on metro trains, fast and safe evacuation is crucial for saving passengers’ health and lives. Evacuation from the tunnels of the Warsaw metro can only take place properly on underground platforms. The key parameter determining passenger safety is required safe evacuation time. Project and methods: Four evacuation experiments were carried out. In the first experiment, people on the train left the train into the tunnel, walked towards the station and climbed the stairs to the platform level. The experiment ended when all people entered the platform level. In the second experiment, the passengers went to the end of the train. After a fixed sound signal, the persons moved along the train and went out onto the platform. The study ended when all the people entered the platform. Experiment 3 investigated the times when a certain number of people passed through one or more doors of the train. In experiment 4, the aim was to investigate the time of people walking along the platform and up the stairs to the mezzanine level. Results: The longest recorded average time of passage through the whole train is 133.5 s during longitudinal evacuation. The shortest recorded exit time is 9 seconds, evacuees were deployed throughout the car without restrictions. In the train of type 81, for technical reasons, no experiment was carried out consisting of moving along the entire train, and it should be noted that this train has separate, closed carriages and to walk through the whole train it would be necessary to open each door between the train. Conclusions: The data from experiments II and IV were combined and extrapolated taking into account the evacuation time for the maximum number of passengers who can occupy the trains, i.e. 1,500 people on the Inspiro train, 1,454 people on the Alstom train and 1,200 people on Type 81 train. The results of the experiment indicate that the longest passage time in very unfavourable conditions, when passengers have to pass the whole train and then exit the platform registered for type 81 train and is almost 433 seconds. For Inspiro and Alstom trains, the time is almost 25% shorter. Such a large difference in time is related to the way of connecting individual carriages – to move from car to car in type 81 train, it is necessary to open wo doors each time (from the abandoned car and the car to which you are passing), while this activity is not performed on Inspiro and Alstom trains.

Keywords