Forests (Nov 2019)

Soil Carbon Storage and Its Determinants in Forest Fragments of Differentiated Patch Size

  • Chunyu Shen,
  • Lei Ma,
  • Jiaxi Hu,
  • Liyang Huang,
  • Yujuan Chen,
  • Dongsheng Guan

DOI
https://doi.org/10.3390/f10111044
Journal volume & issue
Vol. 10, no. 11
p. 1044

Abstract

Read online

Research Highlights: Soil carbon storage (SOC) decreased due to forest fragmentation through lower proportion of macroaggregate distribution, higher storage of fine roots and litter falls, and lower fine root production rate. Background and Objectives: Globally, forest fragmentation processes lead to enormous losses of SOC in forests. We investigated SOC and its determinants in forest fragments experiencing edge disturbances in south China. Materials and Methods: Soil aggregate characteristics, dynamics of fine roots, and litter fall were studied from forest edges to interiors. Generalized linear mixed models were used to model the contributions of fine root and litter fall dynamics to carbon concentration in aggregates. Results: Large and small macroaggregates had higher proportion of aggregate distribution and contributed more carbon to SOC in all types of plots in the present study. SOC significantly increased from forest edges to interiors due to carbon concentration of these two aggregate types increasing from edges to interiors, while the proportion of different aggregate distributions was similar within each plot. The same trend was found with increasing forest patch size. Fine root biomass storage had the strongest impact on carbon concentration in large macroaggregates and microaggregates, with higher fine root biomass storage associated with lower carbon concentration. In addition, biomass storage and production rates of both fine roots and litter falls decreased from forest interiors to edges. Our results showed that SOC was significantly decreased due to the lower proportion of large and small macroaggregate distribution, and lower fine root production rate in forest fragments. Conclusions: SOC loss due to effects of forest fragmentation and forest edges occurred through decreased concentrations of soil aggregates and fine root production rates. Results from this study will enhance our ability to evaluate soil aggregate, fine root, and leaf litter fall contributions to SOC within forest fragments, and to suggest basic recommendations for the management and conservation of these forest fragments.

Keywords