European Physical Journal C: Particles and Fields (Feb 2020)
Primordial gravitational waves spectrum in the Coupled-Scalar-Tachyon Bounce Universe
Abstract
Abstract We extend our study on the Coupled-Scalar-Tachyon Bounce Universe to obtain its gravitational waves spectrum. We derive in detail the equations of motion for the tensorial modes of primordial metric perturbations in the Coupled-Scalar-Tachyon Bounce Universe. We solve for the gravitational wave equations in the pre-bounce contraction and the post-bounce expansion epochs. To match the solutions of the tensor perturbations, we idealise the bounce process yet retaining the essential physical properties of the bounce universe. We put forward two matching conditions: one ensures the continuity of the gravitational wave functions and the other respects the symmetric nature of the bounce dynamics. The matching conditions connect the two independent modes of gravitational waves solutions before and after the bounce. We further analyze the scale dependence and time dependence of the gravitational waves spectra in the bounce universe and compare them with the primordial spectrum in the single field inflation scenario. We discuss the implications to early universe physics and present model independent observational signatures extracted from the bounce universe.