International Journal of Advanced Robotic Systems (Jun 2020)
A new geometry-based secondary path planning for automatic parking
Abstract
In auto-parking systems, a certain degree of error in the path tracking algorithm is inevitable. This is caused by actuator error, tire slipping, or other factors relevant to and included in the parking process. In such situations, the parking path needs to be updated to finish parking successfully which is referred to as secondary path planning. Herein, a new geometry-based method is proposed to deal with this issue, which can be called the pattern-based method. In this method, a predefined path pattern set consisting of 24 multi-segment patterns is developed first. These patterns are composed of straight lines and arcs and account for constraints due to motion and the immediate environment. Then, a traversal policy is adopted to select the path pattern from the set, and the sequential quadratic programming algorithm is used to determine the optimal parameters that fine-tune the pattern to meet the current constraints. In the simulation section, the effectiveness of the proposed method is demonstrated. Moreover, compared to the search-based method represented by a variation of rapidly exploring random tree*, the proposed method has a higher planning performance.