Toxins (Nov 2021)

Development of Antibody Detection ELISA Based on Immunoreactive Toxins and Toxin-Derived Peptides to Evaluate the Neutralization Potency of Equine Plasma against <i>Naja atra</i> in Taiwan

  • Chien-Chun Liu,
  • Yung-Chin Hsiao,
  • Lichieh Julie Chu,
  • Po-Jung Wang,
  • Chien-Hsin Liu,
  • Wen-Chin Hsieh,
  • Jau-Song Yu

DOI
https://doi.org/10.3390/toxins13110818
Journal volume & issue
Vol. 13, no. 11
p. 818

Abstract

Read online

Naja atra, also known as Taiwanese cobra, is one of the most prevalent venomous snakes in Taiwan. Clinically, freeze-dried neurotoxic antivenom (FNAV) produced from horses by Taiwan Centers for Disease Control (CDC) has been the only approved treatment for N. atra envenoming for the last few decades. During antivenom production, large numbers of mice are used in the in vivo assay to determine whether the neutralization potency of hyperimmunized equines is satisfactory for large-scale harvesting. However, this in vivo assay is extremely laborious, expensive, and significantly impairs animal welfare. In the present study, we aimed to develop an in vitro ELISA-based system that could serve as an alternative assay to evaluate the neutralization potency of plasma from hyperimmunized equines. We initially obtained 51 plasma samples with known (high or low) neutralization potency assessed in vivo from 9 hyperimmunized equines and subsequently determined their antibody titers against the five major protein components of N. atra venom (neurotoxin (NTX), phospholipase A2 (PLA2), cytotoxin (CTX), cysteine-rich secretory protein (CRISP), and snake venom metalloproteinase (SVMP)) via ELISA. The antibody titer against NTX was the most effective in discriminating between high and low potency plasma samples. To identify the specific epitope(s) of NTX recognized by neutralization potency-related antibodies, 17 consecutive NTX-derived pentadecapeptides were synthesized and used as antigens to probe the 51 equine plasma samples. Among the 17 peptides, immunoreactive signals for three consecutive peptides (NTX1-8, NTX1-9, and NTX1-10) were significantly higher in the high potency relative to low potency equine plasma groups (p N. atra.

Keywords