Polymers (Sep 2019)

Solvent Effects on Morphology and Electrical Properties of Poly(3-hexylthiophene) Electrospun Nanofibers

  • Jung-Yao Chen,
  • Chien-You Su,
  • Chau-Hsien Hsu,
  • Yi-Hua Zhang,
  • Qin-Cheng Zhang,
  • Chia-Ling Chang,
  • Chi-Chung Hua,
  • Wen-Chang Chen

DOI
https://doi.org/10.3390/polym11091501
Journal volume & issue
Vol. 11, no. 9
p. 1501

Abstract

Read online

Herein, poly(3-hexylthiophene-2,5-diyl) (P3HT) nanofiber-based organic field-effect transistors were successfully prepared by coaxial electrospinning technique with P3HT as the core polymer and poly(methyl methacrylate) (PMMA) as the shell polymer, followed by extraction of PMMA. Three different solvents for the core polymer, including chloroform, chlorobenzene and 1,2,4-trichlorobenzene, were employed to manipulate the morphologies and electrical properties of P3HT electrospun nanofibers. Through the analyses from dynamic light scattering of P3HT solutions, polarized photoluminescence and X-ray diffraction pattern of P3HT electrospun nanofibers, it is revealed that the P3HT electrospun nanofiber prepared from the chloroform system displays a low crystallinity but highly oriented crystalline grains due to the dominant population of isolated-chain species in solution that greatly facilitates P3HT chain stretching during electrospinning. The resulting high charge-carrier mobility of 3.57 × 10−1 cm2·V−1·s−1 and decent mechanical deformation up to a strain of 80% make the P3HT electrospun nanofiber a promising means for fabricating stretchable optoelectronic devices.

Keywords