Cell Death and Disease (Apr 2022)
LncRNA HOXC-AS3 promotes non-small-cell lung cancer growth and metastasis through upregulation of YBX1
Abstract
Abstract NSCLC is common and is the primary cause of cancer-related deaths due to a lack of early diagnosis and its propensity for metastasis. The pathogenesis of NSCLC is still unclear. Here, we explored the molecular mechanisms underlying NSCLC development, focusing on the HOXC-AS3/YBX1/HOXC8 axis. Human NSCLC specimens and cell lines were used. qRT-PCR and western blotting were utilised to examine the levels of HOXC-AS3/YBX1/HOXC8. CCK-8, colony formation, scratch wound healing and Transwell assays were performed to evaluate cancer cell proliferation, migration and invasion. A nude mouse xenograft model was used to examine tumour growth and metastasis in vivo. RNA pull-down, chromatin immunoprecipitation, coimmunoprecipitation and dual-luciferase assays were applied to validate the interactions of HOXC-AS3/YBX1, MDM2/YBX1 and the YBX1/HOXC8 promoter. The levels of HOXC-AS3 and HOXC8 were increased in human NSCLC specimens and cells. Knockdown of HOXC-AS3 suppressed NSCLC cell proliferation, migration and invasion, as well as tumour growth and metastasis in vivo. HOXC-AS3 directly bound to YBX1 to suppress its ubiquitination mediated by MDM2. YBX1 bound to the HOXC8 promoter and enhanced its transcription. Knockdown of HOXC8 inhibited the effects of HOXC-AS3 overexpression on NSCLC. HOXC-AS3 promotes NSCLC growth and metastasis by stabilising YBX1 and thus increasing HOXC8 transcription. Our study indicates that the HOXC-AS3/YBX1/HOXC8 axis could serve as a biomarker for NSCLC diagnosis or as a target for therapy development.