Biology (Sep 2024)
Rhizobacteria Isolated from Amazonian Soils Reduce the Effects of Water Stress on the Growth of Açaí (<i>Euterpe oleracea</i> Mart.) Palm Seedlings
Abstract
Euterpe oleracea Mart., also known for its fruit açaí, is a palm native to the Amazon region. The state of Pará, Brazil, accounts for over 90% of açaí production. Demand for the fruit in national and international markets is increasing; however, climate change and diseases such as anthracnose, caused by the fungus Colletotrichum sp., lead to decreased production. To meet demand, measures such as expanding cultivation in upland areas are often adopted, requiring substantial economic investments, particularly in irrigation. Therefore, the aim of this study was to evaluate the potential of açaí rhizobacteria in promoting plant growth (PGPR). Rhizospheric soil samples from floodplain and upland açaí plantations were collected during rainy and dry seasons. Bacterial strains were isolated using the serial dilution method, and subsequent assays evaluated their ability to promote plant growth. Soil analyses indicated that the sampling period influenced the physicochemical properties of both areas, with increases observed during winter for most soil components like organic matter and C/N ratio. A total of 177 bacterial strains were isolated from rhizospheres of açaí trees cultivated in floodplain and upland areas across dry and rainy seasons. Among these strains, 24% produced IAA, 18% synthesized ACC deaminase, 11% mineralized organic phosphate, and 9% solubilized inorganic phosphate, among other characteristics. Interestingly, 88% inhibited the growth of phytopathogenic fungi of the genera Curvularia and Colletotrichum. Analysis under simulated water stress using Polyethylene Glycol 6000 revealed that 23% of the strains exhibited tolerance. Two strains were identified as Bacillus proteolyticus (PP218346) and Priestia aryabhattai (PP218347). Inoculation with these strains increased the speed and percentage of açaí seed germination. When inoculated in consortium, 85% of seeds germinated under severe stress, compared to only 10% in the control treatment. Therefore, these bacteria show potential for use as biofertilizers, enhancing the initial development of açaí plants and contributing to sustainable agricultural practices.
Keywords