Acta Neuropathologica Communications (Jan 2024)

Unclassifiable CNS tumors in DNA methylation-based classification: clinical challenges and prognostic impact

  • Richard Drexler,
  • Florian Brembach,
  • Jennifer Sauvigny,
  • Franz L. Ricklefs,
  • Alicia Eckhardt,
  • Helena Bode,
  • Jens Gempt,
  • Katrin Lamszus,
  • Manfred Westphal,
  • Ulrich Schüller,
  • Malte Mohme

DOI
https://doi.org/10.1186/s40478-024-01728-9
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 8

Abstract

Read online

Abstract DNA methylation analysis has become a powerful tool in neuropathology. Although DNA methylation-based classification usually shows high accuracy, certain samples cannot be classified and remain clinically challenging. We aimed to gain insight into these cases from a clinical perspective. To address, central nervous system (CNS) tumors were subjected to DNA methylation profiling and classified according to their calibrated score using the DKFZ brain tumor classifier (V11.4) as “≥ 0.84” (score ≥ 0.84), “0.3–0.84” (score 0.3–0.84), or “< 0.3” (score < 0.3). Histopathology, patient characteristics, DNA input amount, and tumor purity were correlated. Clinical outcome parameters were time to treatment decision, progression-free, and overall survival. In 1481 patients, the classifier identified 69 (4.6%) tumors with an unreliable score as “< 0.3”. Younger age (P < 0.01) and lower tumor purity (P < 0.01) compromised accurate classification. A clinical impact was demonstrated as unclassifiable cases (“< 0.3”) had a longer time to treatment decision (P < 0.0001). In a subset of glioblastomas, these cases experienced an increased time to adjuvant treatment start (P < 0.001) and unfavorable survival (P < 0.025). Although DNA methylation profiling adds an important contribution to CNS tumor diagnostics, clinicians should be aware of a potentially longer time to treatment initiation, especially in malignant brain tumors.

Keywords