Agronomy (Sep 2022)

Design of the Mechanical Structure of a Field-Based Crop Phenotyping Platform and Tests of the Platform

  • Huali Yuan,
  • Yiming Liu,
  • Minghan Song,
  • Yan Zhu,
  • Weixing Cao,
  • Xiaoping Jiang,
  • Jun Ni

DOI
https://doi.org/10.3390/agronomy12092162
Journal volume & issue
Vol. 12, no. 9
p. 2162

Abstract

Read online

The field mobile platform is an important tool for high-throughput phenotype monitoring. To overcome problems in existing field-based crop phenotyping platforms, including limited application scope and low stability, a rolling adjustment method for the wheel tread was proposed. A self-propelled three-wheeled field-based crop phenotyping platform with variable wheel tread and height above ground was developed, which enabled phenotypic information of different dry crops in different development stages. A three-dimensional model of the platform was established using Pro/E; ANSYS and ADAMS were used for static and dynamic performance. Results show that when running on flat ground, the platform has a vibration acceleration lower than 0.5 m/s2. When climbing over an obstacle with a height of 100 mm, the vibration amplitude of the platform is 88.7 mm. The climbing angle is not less than 15°. Field tests imply that the normalized difference vegetation index (NDVI) and the ratio vegetation index (RVI) of a canopy measured using crop growth sensors mounted on the above platform show favorable linear correlations with those measured using a handheld analytical spectral device (ASD). Their R2 values are 0.6052 and 0.6093 and root-mean-square errors (RMSEs) are 0.0487 and 0.1521, respectively. The field-based crop phenotyping platform provides a carrier for high-throughput acquisition of crop phenotypic information.

Keywords