Surfaces (Apr 2020)

Ni-Doped Titanium Dioxide Films Obtained by Plasma Electrolytic Oxidation in Refrigerated Electrolytes

  • Hamed Arab,
  • Gian Luca Chiarello,
  • Elena Selli,
  • Giacomo Bomboi,
  • Alberto Calloni,
  • Gianlorenzo Bussetti,
  • Guglielmo Albani,
  • Massimiliano Bestetti,
  • Silvia Franz

DOI
https://doi.org/10.3390/surfaces3020013
Journal volume & issue
Vol. 3, no. 2
pp. 168 – 181

Abstract

Read online

Porous crystalline Ni-doped TiO2 films were produced using DC plasma electrolytic oxidation in refrigerated H2SO4 aqueous solutions containing NiSO4. The crystalline phase structure consisted of a mixture of anatase and rutile, ranging from ~30 to ~80 wt % rutile. The oxide films obtained at low NiSO4 concentration showed the highest photocurrent values under monochromatic irradiation in the UV-vis range, outperforming pure TiO2. By increasing NiSO4 concentration above a threshold value, the photoelectrochemical activity of the films decreased below that of undoped TiO2. Similar results were obtained using cyclic voltammetry upon polychromatic UV-vis irradiation. Glow discharge optical emission spectrometry (GD-OES) analysis evidenced a sulfur signal peaking at the TiO2/Ti interface. XPS spectra revealed that oxidized Ni2+, S4+ and S6+ ions were included in the oxide films. In agreement with photocurrent measurements, photoluminescence (PL) spectra confirmed that less intense PL emission, i.e., a lower electron-hole recombination rate, was observed for Ni-doped samples, though overdoping was detrimental.

Keywords