In this article, we give rotational motions on any straight line or any parabola in a scalar product space. To achieve this goal, we first define the generalized Galilean scalar product and determine the generalized Galilean skew symmetric and orthogonal matrices. Then, using the well-known Rodrigues, Cayley, and Householder maps, we produce the generalized Galilean rotation matrices. Finally, we show that these rotation matrices can also be used to determine parabolic rotational motion.