Journal of Engineering (May 2023)

Optimal Dimensions of Small Hydraulic Structure Cutoffs Using Coupled Genetic Algorithm and ANN Model

  • Rafa Hashim Al-Suhaili,
  • Rizgar Ahmed Karim

DOI
https://doi.org/10.31026/j.eng.2014.02.01
Journal volume & issue
Vol. 20, no. 2

Abstract

Read online

A genetic algorithm model coupled with artificial neural network model was developed to find the optimal values of upstream, downstream cutoff lengths, length of floor and length of downstream protection required for a hydraulic structure. These were obtained for a given maximum difference head, depth of impervious layer and degree of anisotropy. The objective function to be minimized was the cost function with relative cost coefficients for the different dimensions obtained. Constraints used were those that satisfy a factor of safety of 2 against uplift pressure failure and 3 against piping failure. Different cases reaching 1200 were modeled and analyzed using geo-studio modeling, with different values of input variables. The soil was considered homogeneous anisotropic. For each case, the length of protection (L) and the volume of the superstructure (V) required to satisfy the factors of safety mentioned above were calculated. These data were used to obtain an artificial neural network model for estimating (L) and (V) for a given length of upstream cutoff (S1), length of downstream cutoff (S2), head difference (H), length of floor (B), depth of impervious layer (D) and degree of anisotropy (kx/ky). A MatLAB code was written to perform a genetic algorithm optimization modeling using the obtained ANN model .The obtained optimum solution for some selected cases were compared with the Geo-studio modeling to find the length of protection required in the downstream side and volume required for superstructure. Values estimated were found comparable to the obtained values from the Genetic Algorithm model.

Keywords