Agriculture (May 2024)
Design and Optimization of Geometry of Liquid Feed Conveyor Pipes
Abstract
The promotion and use of liquid feeding face the challenge of insufficiently stable delivery. This issue can be resolved, in part, by using the spiral flow produced by a spiral pipe (SPP). The aim of this study is to investigate how the structural characteristics of the spiral pipe affect the flow state of the liquid feed, and for this purpose, the computational fluid dynamics (CFD) technique has been employed and the liquid feed delivery process has been simulated by means of an Eulerian two-fluid model The results reveal a significant improvement in the slurry’s homogeneity as it traveled through a spiral pipe compared with a straight pipe (STP). The swirl number normally increased with the number, length, height, and angle of the spiral pipe’s guide vanes. The solid-phase distribution was more homogeneous when values of N = 1, L = 1D, H = 3/8R, and θ = 20° were used, respectively, and the COV within 10D downstream of the outlet of the spiral pipe was 3.902% smaller than that of the straight pipe. The results of this study can be used as a reference for the design of liquid feed-conveying pipes.
Keywords