Symmetry (Jan 2022)
Guidance Image-Based Enhanced Matched Filter with Modified Thresholding for Blood Vessel Extraction
Abstract
Fundus images have been established as an important factor in analyzing and recognizing many cardiovascular and ophthalmological diseases. Consequently, precise segmentation of blood using computer vision is vital in the recognition of ailments. Although clinicians have adopted computer-aided diagnostics (CAD) in day-to-day diagnosis, it is still quite difficult to conduct fully automated analysis based exclusively on information contained in fundus images. In fundus image applications, one of the methods for conducting an automatic analysis is to ascertain symmetry/asymmetry details from corresponding areas of the retina and investigate their association with positive clinical findings. In the field of diabetic retinopathy, matched filters have been shown to be an established technique for vessel extraction. However, there is reduced efficiency in matched filters due to noisy images. In this work, a joint model of a fast guided filter and a matched filter is suggested for enhancing abnormal retinal images containing low vessel contrasts. Extracting all information from an image correctly is one of the important factors in the process of image enhancement. A guided filter has an excellent property in edge-preserving, but still tends to suffer from halo artifacts near the edges. Fast guided filtering is a technique that subsamples the filtering input image and the guidance image and calculates the local linear coefficients for upsampling. In short, the proposed technique applies a fast guided filter and a matched filter for attaining improved performance measures for vessel extraction. The recommended technique was assessed on DRIVE and CHASE_DB1 datasets and achieved accuracies of 0.9613 and 0.960, respectively, both of which are higher than the accuracy of the original matched filter and other suggested vessel segmentation algorithms.
Keywords