Complex & Intelligent Systems (Aug 2021)

A noise-based privacy preserving model for Internet of Things

  • Shelendra Kumar Jain,
  • Nishtha Kesswani

DOI
https://doi.org/10.1007/s40747-021-00489-5
Journal volume & issue
Vol. 9, no. 4
pp. 3655 – 3679

Abstract

Read online

Abstract With the ever-increasing number of devices, the Internet of Things facilitates the connection between the devices in the hyper-connected world. As the number of interconnected devices increases, sensitive data disclosure becomes an important issue that needs to be addressed. In order to prevent the disclosure of sensitive data, effective and feasible privacy preservation strategies are necessary. A noise-based privacy-preserving model has been proposed in this article. The components of the noise-based privacy-preserving model include Multilevel Noise Treatment for data collection; user preferences-based data classifier to classify sensitive and non-sensitive data; Noise Removal and Fuzzification Mechanism for data access and user-customized privacy preservation mechanism. Experiments have been conducted to evaluate the performance and feasibility of the proposed model. The results have been compared with existing approaches. The experimental results show an improvement in the proposed noise-based privacy-preserving model in terms of computational overhead. The comparative analysis indicates that the proposed model without the fuzzifier has around 52–77% less computational overhead than the Data access control scheme and 46–70% less computational overhead compared to the Dynamic Privacy Protection model. The proposed model with the fuzzifier has around 48–73% less computational overhead compared to the Data access control scheme and 31–63% less computational overhead compared to the Dynamic Privacy Protection model. Furthermore, the privacy analysis has been done with the relevant approaches. The results indicate that the proposed model can customize privacy as per the users’ preferences and at the same time takes less execution time which reduces the overhead on the resource constraint IoT devices.

Keywords