Ecotoxicology and Environmental Safety (May 2021)

Role of PKA/CREB/BDNF signaling in PM2.5-induced neurodevelopmental damage to the hippocampal neurons of rats

  • Jie Liu,
  • Benke Liu,
  • Ping Yuan,
  • Li Cheng,
  • Hong Sun,
  • Jianxiong Gui,
  • Yanan Pan,
  • Dishu Huang,
  • Hengsheng Chen,
  • Li Jiang

Journal volume & issue
Vol. 214
p. 112005

Abstract

Read online

Exposure to fine particulate matter (PM2.5) is implicated in neurodevelopmental disorders including cognitive decline, attention-deficit/hyperactivity disorder, and autism spectrum disorder. However, the specific molecular mechanisms by which PM2.5 impacts neurodevelopment are poorly understood. Accordingly, in the present study, the role of protein kinase A (PKA)/cAMP response element binding protein (CREB)/brain-derived neurotrophic factor (BDNF) signaling in PM2.5-induced neurodevelopmental damage was investigated using primary cultured hippocampal neurons.When hippocampal neurons cultured for 3 days in vitro (DIV3) were exposed to PM2.5 for 24 h and 96 h, neuronal viability decreased by 18.8% and 32.7% respectively, percentage of TUNEL-positive neurons increased by 78.5% and 64.0% separately, caspase-9 expression increased, lower postsynaptic density and shorter active zones were observed by transmission electron microscopy, expression of synapse-related proteins including postsynaptic density-95 (PSD95), growth associated protein-43 (GAP43), and synaptophysin (SYP) were decreased, and the phosphorylation levels of PKA, CREB, and BDNF expression also decreased. However, the PM2.5-induced neuronal damage could be ameliorated or aggravated to varying degrees by up- or down-regulation of the PKA/CREB/BDNF signaling pathway, respectively.Our results indicate that PM2.5 exposure exerts neurodevelopmental toxicity as indicated by lower viability, apoptosis, and synaptic damage in primary cultured hippocampal neurons, and that the PKA/CREB/BDNF pathways could play a vital role in PM2.5-mediated neurodevelopmental toxicity.

Keywords