Science and Engineering of Composite Materials (Nov 2018)

Degradable Mg alloy composites using fly ash cenospheres

  • Zhikang Ji,
  • Sirong Yu,
  • Xiaoli Yin

DOI
https://doi.org/10.1515/secm-2017-0243
Journal volume & issue
Vol. 25, no. 6
pp. 1115 – 1122

Abstract

Read online

The feasibility of fabricating Mg alloy degradable composites with fly ash cenospheres (FACs) using stir casting has been demonstrated. The effects of FAC addition (mass fraction: 0, 2, 4, 6, 8 and 10 wt.%) on the microstructure, mechanical properties and corrosion behavior were investigated using optical microscope, scanning electron microscope, X-ray diffraction, density tests, compression tests, immersion tests and electrochemical measurements. The result shows that the degradable composites are mainly composed of α-Mg, β-Mg17Al12, Mg2Si and MgO phase, and FAC can refine the grain size. The average measured densities of the FAC/Mg alloy composites are higher than the theoretical values due to the formation of the Mg2Si phase, which are in the range of 1.8843–2.0526 g/cm3. The compressive strength of the degradable composites dramatically enhances with the addition of FAC, and the maximum strength is 375 MPa with the 8-wt.% mass fraction, which can be attributed to the refined grains and the formation of massive Mg2Si phase. Furthermore, the corrosion rate of the degradable composites with 10 wt.% FACs shows the highest value of 5.02 g/h in 3 wt.% potassium chloride solution at 80°C, which is three times higher than the corrosion rate of composites without FAC. With the increase in FAC content, more Mg2Si phases formed; thus, micro-galvanic corrosion works well in the composites.

Keywords