PLoS ONE (Jan 2013)

The first phylogeographic population structure and analysis of transmission dynamics of M. africanum West African 1--combining molecular data from Benin, Nigeria and Sierra Leone.

  • Florian Gehre,
  • Martin Antonio,
  • Frank Faïhun,
  • Mathieu Odoun,
  • Cecile Uwizeye,
  • Pim de Rijk,
  • Bouke C de Jong,
  • Dissou Affolabi

DOI
https://doi.org/10.1371/journal.pone.0077000
Journal volume & issue
Vol. 8, no. 10
p. e77000

Abstract

Read online

Mycobacterium africanum is an important cause of tuberculosis (TB) in West Africa. So far, two lineages called M. africanum West African 1 (MAF1) and M. africanum West African 2 (MAF2) have been defined. Although several molecular studies on MAF2 have been conducted to date, little is known about MAF1. As MAF1 is mainly present in countries around the Gulf of Guinea we aimed to estimate its prevalence in Cotonou, the biggest city in Benin. Between 2005-06 we collected strains in Cotonou/Benin and genotyped them using spoligo- and 12-loci-MIRU-VNTR-typing. Analyzing 194 isolates, we found that 31% and 6% were MAF1 and MAF2, respectively. Therefore Benin is one of the countries with the highest prevalence (37%) of M. africanum in general and MAF1 in particular. Moreover, we combined our data from Benin with publicly available genotyping information from Nigeria and Sierra Leone, and determined the phylogeographic population structure and genotypic clustering of MAF1. Within the MAF1 lineage, we identified an unexpected great genetic variability with the presence of at least 10 sub-lineages. Interestingly, 8 out of 10 of the discovered sub-lineages not only clustered genetically but also geographically. Besides showing a remarkable local restriction to certain regions in Benin and Nigeria, the sub-lineages differed dramatically in their capacity to transmit within the human host population. While identifying Benin as one of the countries with the highest overall prevalence of M. africanum, this study also contains the first detailed description of the transmission dynamics and phylogenetic composition of the MAF1 lineage.