Results in Physics (Jan 2016)

Stability analysis of the soliton solutions for the generalized quintic derivative nonlinear Schrödinger equation

  • Chen Yue,
  • Aly Seadawy,
  • Dianchen Lu

Journal volume & issue
Vol. 6
pp. 911 – 916

Abstract

Read online

The propagation of hydrodynamic wave packets and media with negative refractive index is studied in a quintic derivative nonlinear Schrödinger (DNLS) equation. The quintic DNLS equation describe the wave propagation on a discrete electrical transmission line. We obtain a Lagrangian and the invariant variational principle for quintic DNLS equation. By using a class of ordinary differential equation, we found four types of exact solutions of the quintic DNLS equation, which are kink-type solitary wave solution, antikink-type solitary wave solution, sinusoidal solitary wave solution, bell-type solitary wave solution. By applying the modulation instability to discuss stability analysis of the obtained solutions. Modulation instabilities of continuous waves and localized solutions on a zero background have been investigated. Keywords: Quintic derivative NLS equation, Solitary wave solutions, Mathematical physics methods, 2000 MR Subject Classification: 35G20, 35Q53, 37K10, 49S05, 76A60