The Astronomical Journal (Jan 2024)

Assessment of Callisto Gravity-field Determination Using the Inter-satellite Range-rate Link

  • Shangbiao Sun,
  • Jianguo Yan,
  • Wutong Gao,
  • Bo Wang,
  • Dominic Dirkx,
  • Zhen Wang,
  • Yongzhang Yang,
  • Jean-Pierre Barriot

DOI
https://doi.org/10.3847/1538-3881/ad4460
Journal volume & issue
Vol. 168, no. 1
p. 3

Abstract

Read online

China will launch the “Tianwen-IV” mission around 2030, focusing on the orbiting exploration of Jupiter and Callisto, a moon of Jupiter. As part of this ambitious mission, a main satellite will carry another satellite that will be released in the Jupiter system to continue its journey toward Uranus. Considering the current mission planning, we propose an inter-satellite radio-observation mode that differs from the conventional observation mode of tracking from Earth to precisely determine the orbit of the satellites. Given the significance of the Callisto gravity field model in both science objectives and satellite navigation, we have conducted a series of simulation experiments to evaluate the potential of this inter-satellite range-rate data for accurately estimating the Callisto gravity field. The results obtained from the analysis demonstrate that by utilizing 40 days of ground station observations, it is possible to estimate the gravity field model of Callisto up to a degree of 70. Remarkably, when combining these ground station observations with inter-satellite observations, a comparable level of accuracy can be achieved with just 10 days of observations. Furthermore, with reduced inter-satellite observation noise, accuracy improves, enabling estimation up to 80 degrees or higher. Initial inter-satellite distance selection impacts estimation accuracy. These findings serve as a valuable test bed for the future “Tianwen-IV” mission to perform precise orbit determination and gravity field model estimation to reduce reliance on deep space stations.

Keywords