Proceedings (Jul 2020)
Analysis of Three Small-Scale Photovoltaic Systems Based on Simulation and Measurement Data
Abstract
Sunlight is converted into electrical energy due to the photovoltaic effect in photovoltaic arrays. The energy yield of photovoltaic systems depends on the solar array location, orientation, tilt, tracking and local weather conditions. Currently, simulation software is most often used to analyze the operation of photovoltaic (PV) systems and to estimate the energy yield. In this article, the differences in energy yield calculations given by the simulation software and the measured data are determined. The analysis was carried out based on mathematical models and real measurement data, regarding the dependence of the average temperature of PV arrays on variable and difficult to predict ambient conditions. For the purpose of this analysis, thermal models for flat-plate photovoltaic arrays were used. The photovoltaic installations PV1, PV2a and PV2b, belonging to the hybrid power plant of the Bialystok University of Technology in Poland, were indicated as the data source. There is no universal mathematical model to determine the average temperature of the PV modules for every type of the installation with a small normalized root-mean-squared error. The Skoplaki model proved to be the best method in the case of a free-standing solar system. On the other hand, the data values obtained from building integrated installations were better modeled by a method which used parameters under NOCT (Normal Operating Cell Temperature) conditions.
Keywords