PLoS ONE (Jan 2016)
Interacting Social Processes on Interconnected Networks.
Abstract
We propose and study a model for the interplay between two different dynamical processes -one for opinion formation and the other for decision making- on two interconnected networks A and B. The opinion dynamics on network A corresponds to that of the M-model, where the state of each agent can take one of four possible values (S = -2,-1, 1, 2), describing its level of agreement on a given issue. The likelihood to become an extremist (S = ±2) or a moderate (S = ±1) is controlled by a reinforcement parameter r ≥ 0. The decision making dynamics on network B is akin to that of the Abrams-Strogatz model, where agents can be either in favor (S = +1) or against (S = -1) the issue. The probability that an agent changes its state is proportional to the fraction of neighbors that hold the opposite state raised to a power β. Starting from a polarized case scenario in which all agents of network A hold positive orientations while all agents of network B have a negative orientation, we explore the conditions under which one of the dynamics prevails over the other, imposing its initial orientation. We find that, for a given value of β, the two-network system reaches a consensus in the positive state (initial state of network A) when the reinforcement overcomes a crossover value r*(β), while a negative consensus happens for r βc. We develop an analytical mean-field approach that gives an insight into these regimes and shows that both dynamics are equivalent along the crossover line (r*, β*).