Plants (Apr 2022)

Cadmium Stabilization and Redox Transformation Mechanism in Maize Using Nanoscale Zerovalent-Iron-Enriched Biochar in Cadmium-Contaminated Soil

  • Sehar Razzaq,
  • Beibei Zhou,
  • Muhammad Zia-ur-Rehman,
  • Muhammad Aamer Maqsood,
  • Saddam Hussain,
  • Ghous Bakhsh,
  • Zhenshi Zhang,
  • Qiang Yang,
  • Adnan Raza Altaf

DOI
https://doi.org/10.3390/plants11081074
Journal volume & issue
Vol. 11, no. 8
p. 1074

Abstract

Read online

Cadmium (Cd) is a readily available metal in the soil matrix, which obnoxiously affects plants and microbiota; thus, its removal has become a global concern. For this purpose, a multifunctional nanoscale zerovalent—iron enriched biochar (nZVI/BC) was used to alleviate the Cd—toxicity in maize. Results revealed that the nZVI/BC application significantly enhanced the plant growth (57%), chlorophyll contents (65%), intracellular permeability (61%), and biomass production index (76%) by restraining Cd uptake relative to Cd control. A Cd stabilization mechanism was proposed, suggesting that high dispersion of organic functional groups (C–O, C–N, Fe–O) over the surface of nZVI/BC might induce complex formations with cadmium by the ion exchange process. Besides this, the regular distribution and deep insertion of Fe particles in nZVI/BC prevent self-oxidation and over-accumulation of free radicals, which regulate the redox transformation by alleviating Cd/Fe+ translations in the plant. Current findings have exposed the diverse functions of nanoscale zerovalent-iron-enriched biochar on plant health and suggest that nZVI/BC is a competent material, feasible to control Cd hazards and improve crop growth and productivity in Cd-contaminated soil.

Keywords