Molecules (Mar 2024)

Preparation and Support Effect of Graphdiyne Nanotubes with Abundant Cu Quantum Dots

  • Yan Lv,
  • Wenzhou Wang,
  • Zhangwei Li,
  • Fucang Liang

DOI
https://doi.org/10.3390/molecules29061410
Journal volume & issue
Vol. 29, no. 6
p. 1410

Abstract

Read online

Graphdiyne (GDY) is considered a very attractive support for metal nanocatalysts due to its unique structure and superior properties. The metal–GDY interaction can significantly affect the performance of catalysts. Herein, GDY nanotubes abundant in in situ formed Cu quantum dots (QDs) (Cu-GDYNT) are prepared using the electrospun polyacrylonitrile nanofibers collected on the surface of electrolytic Cu foil as templates. The diameter of the Cu-GDYNT is controllable and the uniform size of the embedded Cu QDs is about 2.2 nm. And then, the uniformly dispersed and highly active supported catalysts of ruthenium nanoparticles (Rux/Cu-GDYNT) are produced using the Cu-GDYNT as the support. Among them, the Ru3/Cu-GDYNT exhibit outstanding HER performance at all pH levels. Only 17, 67 and 83 mV overpotential is required to reach a current density of 10 mA cm−2 in 1.0 M KOH, 0.5 M H2SO4 and 1.0 M neutral PBS solutions, respectively. The sample exhibits 3000 CV cycle stability and 20 h continuous electrolysis without performance degradation in an alkaline medium. This work provides a new idea for constructing the GDY-supported metal nanocatalysts.

Keywords